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Abstract 

In this article, the first and second-laws analysis of the thermodynamic Dual cycle with considering 

of heat loss are investigated by using finite-time thermodynamics (FTT). The influences of various 

factors (e.g. initial temperature of working fluid, constants related to combustion and heat transfer 

through the cylinder wall) on the performance of Dual cycle are analyzed. As well as, the curve of the 

first-law efficiency versus compression ratio, the net work output versus compression ratio, the second-

law efficiency versus compression ratio and the second-law efficiency versus the first-law efficiency are 

indicated. The finding results in this article can be useful for analysis of Dual cycles.  

 

Keywords: Finite-time thermodynamics; Air-standard Dual cycle; Heat loss; Compression ratio; Net 

work output; First-law efficiency; Second-law efficiency 

 

1. Introduction 

The air-standard Dual cycle (or Dual combustion cycle) is a thermodynamic cycle that is a 

combination of the Otto cycle and the Diesel cycle, first introduced by Russian-German engineer 

Gustav Trinkler. The first-law efficiency (thermal efficiency) is an important thermodynamic 

parameter for analysis of a cycle. The Second-law analysis is a good benchmark for the 

availability of systems. The second-law efficiency is the ratio of the actual first-law efficiency to 

the maximum possible (reversible) thermal efficiency under the same conditions [1]. For the 

work-producing devices, the second-law efficiency can also be expressed as the ratio of the useful 
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work output to the maximum possible (reversible) work output [1,  2]. In recent years, many 

attentions have been paid in order to analyzing the performances of the Dual cycle, other air-

standard cycles and second-law analysis. Ozsoysal [3] investigated effects of combustion 

efficiency on a Dual cycle. Chen et al. [4] studied effects of heat transfer, friction and variable 

specific heats of working fluid on performance of an irreversible Dual cycle. Ge et al. [5] 

investigated finite-time thermodynamic modeling and analysis for an irreversible Dual cycle. Hou 

[6] studied heat transfer effect on the performance of an air standard Dual cycle. Chen  et al. [7] 

studied optimal performance of an irreversible Dual-cycle. Ust et al. [8] investigated 

optimizations of a Dual cycle cogeneration system based on a new exergetic performance 

criterion. Wang et al. [9] investigated the effects of friction on the performance of an air standard 

Dual cycle. Ahmadi et al. [10] studied thermodynamic analysis and thermoeconomic optimization 

of a Dual pressure combined cycle power plant with a supplementary firing unit. Parlak [11] 

investigated comparative performance analysis of irreversible Dual and Diesel cycles under 

maximum power conditions. Gahruei et al. [12] studied Mathematical modeling and comparison 

of air standard Dual and Dual-Atkinson cycles with friction, heat transfer and variable specific 

heats of the working fluid. Lior et al. [13] investigated energy, exergy, and second Law 

performance criteria and Rashidi et al. [14] studied first and second law analysis of an ejector 

expansion Joule–Thomson cryogenic refrigeration cycle. In this article, the first and the second-

laws analysis of an air-standard Dual cycle with heat loss is investigated. 

 

2. Thermodynamic analysis 

The T-s and the P-v diagrams of an air-standard Dual cycle are shown in Figures 1 and 2. The 

Dual cycle consists of five processes, isentropic compression (1→2), heat addition occur at two 

processes, constant-volume (2→3) and constant-pressure (3→4), isentropic expansion (4→5) and 

constant-volume heat rejection (5→1).  
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Figure 1: The T-s Diagram of an air-standard Dual cycle. 

 

For an ideal Dual cycle, the heat added per unit mass of the working fluid during constant -

volume and constant-pressure processes is defined as: 

   3 2 4 3
,

in v p
q C T T C T T   

  
 (1) 

where, 
v

C  and 
p

C  are the constant-volume and constant-pressure specific-heat, respectively. 

For a real Dual cycle, the heat loss between the working fluid and the cylinder wall is not 

negligible. It is assumed that the heat loss through the cylinder wall is proportional to the average 

temperature of both the working fluid and the cylinder wall and that the wall temperature is 

assumed constant. The heat added per unit mass of the working fluid by combustion is defined as 

[4]: 

 2 4
,

in
q A B T T  

  
 (2) 

where, A  and B  are two constants related to the combustion and heat transfer respectively. 

Combining Eqs (1) and (2): 
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Figure 2: The P-v Diagram of an air-standard Dual cycle. 

 

   
 

2 3

4
.

v v p

p

A T C B T C C
T

C B

   




  
  
 (3) 

Defining the compression ratio, ,
c

r  the pressure ratio, ,
p

r  and the cut-off ratio, ,r  as follow: 

1

2

,
c

V
r

V


  
 (4) 

3

2

,
p

T
r

T
    (5) 

and 

4 4

3 3

V T
r

V T
  

  
 (6) 

For the isentropic process (1→2), we have: 

1

2 1
.

k

c
T T r




  
 (7) 

According to Eq. (5), the temperature of the state 3 is defined as: 

3 2
.

p
T T r

  
 (8) 
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For the isentropic process (4→5), we have: 

1 1 1

5 4 4 2

4 5 2 5

.

k k k

c

T V V V r

T V V V r

  

   
     
     
     

  
 (9) 

Thus, 

1

5 4

k

c

r
T T

r



 
 
 
 

  
 (10) 

For an air-standard Dual cycle, the heat rejected per unit mass by the working fluid during 

constant-pressure process is defined: 

 5 1
.

out v
q C T T 

  
 (11) 

 

The net work output per unit mass of the working fluid for the Dual cycle is given by the 

following equation: 

 

 

   3 1 2 5 4 3
.

net in out v p
w q q C T T T T C T T       

  
 (12) 

Finally, the first-law efficiency is defined: 

 

   

   
3 1 2 5 4 3

3 2 4 3

v pnet

I

in v p

C T T T T C T Tw

q C T T C T T


    
  

     
 (13) 

 

The second-law analysis is a good benchmark for the availability of systems that is described 

as the ratio of the actual thermal efficiency (first-law efficiency) to the maximum possible 

(reversible) thermal efficiency under the same conditions. For the work-producing devices, the 

second-law efficiency can also be expressed as the ratio of the useful net work output to the 

maximum possible (reversible) net work output [1, 2]. According to above description, the 

second-law efficiency of an air-standard Dual cycle is defined as: 

,net

II

max

w

w
 

  
 (14) 



International Journal of Mechatronics, Electrical and Computer Technology 

  

Vol. 4(11), Apr. 2014, pp. 315-332, ISSN: 2305-0543 

Available online at: http://www.aeuso.org 

© Austrian E-Journals of Universal Scientific Organization   

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
 

320 

 

where, 
max

w  is maximum possible net work of the Dual cycle. On the other hand, 
max

w  is 

defined as follow: 

 

,
max in max

w q 
  
 (15) 

where, 
max

  is maximum efficiency (the Carnot efficiency) and for the Dual cycle defined as: 

 

1

4

1
II

T

T
   

 
 
    

 (16) 

So, according to Eqs. (1) and (16), Eq. (15) can be written as: 

 

    1

3 2 4 3

4

1
max v p

T
w C T T C T T

T
     

 
    

    
 (17) 

Finally, by substituting Eqs. (12) and (17) into Eq. (14), the second-law efficiency of an air-

standard Dual cycle is as follows: 

 

   

   

3 1 2 5 4 3

1

3 2 4 3

4

1

v p

II

v p

C T T T T C T T

T
C T T C T T

T


    

 

   
 

    
 

  
 

(18) 

 

 

3. Numerical calculations and discussion 

In this paper, the following parameters are used: 

1
280 320 ( ),T K  3500 4500 ( / ),A kJ kg  0.8 1.2 ( / . ),B kJ kg K  1 55,

c
r    

1.003 ( / . ),
p

C kJ kg K  0.716 ( / . ),
v

C kJ kg K 1.6,r  1.2.
p

r   

Figures 3-5, show that the effects of parameters ,A  B  and 
1

T  on curve of the first-law efficiency 

versus the compression ratio. A  and B  are the total input heat and the loss heat respectively.  
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According to these graphs and Eq. (2), the first-law efficiency increases with increasing A  and with 

decreasing B  and 
1
.T
 

Figures 6-8, show that the effects of parameters ,A  B  and 
1

T  on curve of the net work output 

versus the compression ratio. It can be seen that the net work output increases with increasing A  and 

with decreasing B  and 
1
.T  The maximum value of the net work output occur at the compression ratio 

less 20. 

Figures 9-11, show that the effects of parameters ,A  B  and 
1

T  on curve of the net work output 

versus the first-law efficiency. It can be seen that these figures are loop-shaped. The net work output and 

first-law efficiency increase with increasing A  and with decreasing B  and 
1
.T
 
Effects of parameters 

,A  B  and 
1

T  on curve of the second-law efficiency versus the compression ratio illustrate in figures 

12-14. The second-law efficiency versus the compression ratio under variation of parameters ,A  

B  and 
1

T  behave like the first-law efficiency at the same condition (figures 3-5).
 

 

Figures 15-17, show that the effects of parameters ,A  B  and 
1

T  on curve of the net work output 

versus the second-law efficiency. It can be seen that these figures are loop-shaped too and the maximum 

value of the second-law efficiency occur at the maximum value of the net work output. The net work 

output and second-law efficiency increase with increasing A  and with decreasing B  and 
1
.T  Finally, 

the curves of the first-law efficiency versus the second-law efficiency with variation of parameters 

,A  B  and 
1

T  depict in figures 18-20. These curves are sharp loop-shaped and the maximum value of 

the second-law efficiency occur at the maximum value of the first-law efficiency. 
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4. Figures and results 

 

Figure 3: Effect of A  on curves of the fist-law efficiency versus the compression ratio. 

 

Figure 4: Effect of B  on curves of the fist-law efficiency versus the compression ratio. 
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Figure 5: Effect of 
1

T  on curves of the fist-law efficiency versus the compression ratio. 

 

Figure 6: Effect of A  on curves of the net work output versus the compression ratio. 
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Figure 7: Effect of B  on curves of the net work output versus the compression ratio.  

 

Figure 8: Effect of 
1

T  on curves of the net work output versus the compression ratio.  
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Figure 9: Effect of A  on curves of the net work output versus the first-law efficiency. 

 

Figure 10: Effect of B  on curves of the net work output versus the first-law efficiency. 
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Figure 11: Effect of 
1

T  on curves of the net work output versus the first-law efficiency. 

 

Figure 12: Effect of A  on curves of the second-law efficiency versus the compression ratio. 
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Figure 13: Effect of B  on curves of the second-law efficiency versus the compression ratio. 

 

Figure 14: Effect of 
1

T  on curves of the second-law efficiency versus the compression ratio. 
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Figure 15: Effect of A  on curves of the net work output versus the second-law efficiency. 

 

Figure 16: Effect of B  on curves of the net work output versus the second-law efficiency. 
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Figure 17: Effect of 
1

T  on curves of the net work output versus the second-law efficiency. 

 

Figure 18: Effect of A  on curves of the second-law efficiency versus the first-law efficiency. 
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Figure 19: Effect of B  on curves of the second-law efficiency versus the first-law efficiency. 

 

Figure 20: Effect of 
1

T  on curves of the second-law efficiency versus the first-law efficiency. 
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Conclusion 

In this article, the first and second-laws analysis of an air-standard Dual cycle with consideration of 

heat loss have been analyzed. The effects of initial temperature, combustion and heat transfer factors on 

the first-law efficiency, second-law efficiency and the net work output have been shown. The finding 

results of this paper are obvious and should be considered in practical air-standard cycle analysis. 
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